市场与支持 News
近年来,蛋白质翻译后修饰的研究走上了快车道,各类突破性成果不断涌现。而在这个车道上,巴豆酰化修饰可谓是一匹“黑马”。2011年,芝加哥大学赵英明教授课题组在Cell杂志上首次报道了巴豆酰化修饰的发现。由于其重要意义,该项工作更是被评为Cell的“年度五大突破性进展”之一[1]。随后的研究中,其在生殖发育、肿瘤发生、转录调控、抗逆胁迫等各方面的作用被相继揭示出来。国内的科学家在这一领域也是颇有建树,例如在2017年,北大医学部的尚永丰院士和梁静研究员同景杰生物合作,在Molecular Cell上报道了染色质结合蛋白CDYL具有巴豆酰化水合酶的活性。由于其可结合在染色质上,导致局部的巴豆酰辅酶A浓度降低,进而降低结合区域附近的组蛋白巴豆酰化修饰,最终调节精子的发生过程[2]。然而过去的研究往往聚焦在组蛋白上的巴豆酰化修饰,而非组蛋白上的巴豆酰化修饰,尽管也有一些描述性的报道[3-4],但仍然缺乏广泛的分析和功能机制上的深入研究。2020年3月13日,北大医学部梁静研究员和景杰生物CEO程仲毅博士合作在国际著名期刊Science Advances发表题为Global crotonylome reveals CDYL-regulated RPA1 crotonylation in homologous recombination-mediated DNA repair的文章,揭示了迄今为...
发布时间: 2020 - 03 - 16
为了确保高效的生长和生存,细胞必须感知到多样化的营养环境,并相应地迅速调整它们的代谢状态。实现这一目标的方式之一是使基因表达与代谢环境同步。组蛋白修饰为此提供了一种理想的机制,因为组蛋白修饰的变化是快速可逆的,并且依赖于代谢中间产物作为修饰的辅助因子。了解代谢环境、染色质和基因表达之间的关系,揭示代谢稳态的一般原则具有非常重要的意义。近年来,质谱技术的发展促使发现了一些新的组蛋白修饰,其中相当一部分是发生于赖氨酸上的短链酰基化反应(例如巴豆酰化、琥珀酰化、2-羟基异丁酰化、苯甲酰化和乳酸化等),极大地扩展了组蛋白密码的潜在复杂性。巴豆酰化是2011年由赵英明教授发现的一种新型酰化修饰,该修饰在低等生物(如酵母)和高等生物(如灵长类)中均广泛存在,暗示巴豆酰化作用保守且重要。有研究表明在高等动植物中其与活跃的染色质区域相关,能够促进基因的转录。图1、脂肪酸β氧化过程产生酰基辅酶A(紫色字体为巴豆酰辅酶A)近日,国际著名期刊Molecular Cell刊登了由斯坦福大学Ashby Morrison教授团队以及北卡罗莱纳大学Brian D. Strahl教授团队合作完成的一项研究,揭示了组蛋白巴豆酰化修饰在代谢状态和基因转录之间的重要调控作用。该研究以高度同步的酵母代谢周期(yeast metabolic cycle,YMC)为研究基础,发现脂肪酸β氧化基因的周期性表达与β氧化的副产物—...
发布时间: 2020 - 02 - 28
编辑注 | 我们一直致力于打造蛋白质组学领域最自由的学术交流平台,专家视界是我们的一次尝试。我们会不定期邀请领域内的专家与学者,或分享他们的见解、体验和对未来的展望,内容涉及科研、临床、运用等蛋白质组学各个方向,欢迎关注!本文经授权转载自徐旭东科学网博客,分享一段关于:微藻,南极和“青稞”的科学故事。原文 | 徐旭东 (中科院水生生物研究所研究员)提示:爱好生物学的可从第一段读起,爱好“青稞”(青科)靓照和辛酸故事的请直奔最后部分。如果你看多了那些神人神操作的故事,或许在我们普通人之间对于科研和职业精神的朴实理解更有惺惺相惜的感觉。地球上最冷的区域当数南极大陆。那里最低气温可达到-89.2℃,约有99.8%的面积被平均2公里厚的冰层覆盖(图1)。虽然如此,在没有冰盖的区域地表温度常年在-35℃~ 5℃范围内波动。南极的动植物生活在有季节性融水的无冰盖区域,而微藻和其他微生物则不仅生活于这些区域,还能生活于雪地、海冰和封存于冰盖之下的湖泊之中。南极与其他大陆的动植物群落相互隔绝,但是其他大陆的微生物却可以通过大气层流等途径达到南极。图1. 南极正面观。一些山脊(右上角图)和海岸带(右下角)有裸露的陆地(网络下载图片)南极为何如此寒冷?在地质史上,南极是从冈瓦纳大陆分离出来的。约在3400万年到3300万年前,CO2浓度和气温骤降,冰层覆盖南极。约2300万年前,南...
发布时间: 2019 - 12 - 30
食管鳞状细胞癌(Esophageal Squamous Cell Carcinoma, ESCC),是发生于食管,向鳞状上皮分化的恶性肿瘤,占食管癌的绝大多数。预防措施不足和治疗技术不足导致五年生存率低下,迫切需要新的药物用于ESCC的预防或治疗。阿托伐他汀(Atorvastatin)是他汀家族的成员,是甲羟戊酸途径中3-羟基-3-甲基戊二酰辅酶A(HMG-CoA)还原酶的抑制剂,已被用于降低胆固醇水平。越来越多的证据显示,他汀类药物还可以降低癌症的发病率。但是,他汀类药物的抗肿瘤机制尚未完全阐明。近日,郑州大学基础医学院刘康栋教授在国际知名学术期刊Aging在线发表最新研究成果,研究证实了阿托伐他汀可抑制PDX模型中ESCC肿瘤的生长,并进一步运用蛋白质组学和磷酸化组学(景杰生物提供),深入阐释了阿托伐他汀抑制食管鳞状细胞癌细胞增殖的潜在机理。阿托伐他汀可抑制Ras信号通路、cAMP和Rap1信号通路。磷酸化蛋白质组结果表明,阿托伐他汀治疗后ERKT185 / Y187,CDK1T14和BRAC1S1189磷酸化介导的Th17细胞分化,Gap连接和铂类药物耐药途径被下调。1阿托伐他汀抑制ESCC细胞增殖为了评估阿托伐他汀对ESCC生长的影响,研究者用不同浓度的阿托伐他汀处理了KYSE150和KYSE450细胞。结果表明,阿托伐他汀显著减弱了ESCC细胞的生长,而对正常食...
发布时间: 2019 - 11 - 27
翻译后修饰(Post-translational modification, PTM)是指蛋白质在翻译后的化学修饰,越来越多的研究发现,许多重要的生命活动不仅与蛋白质的丰度相关,更重要的是被各类PTM所调控。随着表观遗传学与生物学领域的深入研究,一系列新的酰化类型,如丙酰化、丁酰化、巴豆酰化、琥珀酰化、丙二酰化、戊二酰化、二羟基异丁酰化、三羟基丁酰化、苯甲酰化、乳酸化等被陆续发现,广泛地存在生物体内,与炎症、代谢疾病、肿瘤等疾病密切相关,极大的扩展了人们对代谢调控、信号转导等生命活动的认识。赖氨酸丙酰化(Lysine Propionylation,Kpr)是一种可逆的、广泛分布的翻译后修饰类型,在真核生物和原核生物中均起重要的调控作用。已有研究报道赖氨酸丙酰化在细菌的整体代谢调控网络和代谢酶的活性中起重要作用【1】,并且可能与精子生成与精子功能的发挥密切相关【2】,然而,赖氨酸丙酰化在光合有机体中的程度和功能尚不清楚。近日,中国科学院水生生物研究所的葛峰研究团队在国际专业学术期刊International Journal of Molecular Sciences上发表了丙酰化修饰最新研究成果。研究首次对丙酰化在光合作用生物——蓝藻中的调控功能展开研究,揭示了丙酰化修饰新的生物学功能:参与光合作用和新陈代谢调控,为丙酰化调控的功能范围提供了新的见解。1鉴定Synechoc...
发布时间: 2019 - 11 - 27
种子萌芽是一个复杂的生理过程,从摄取水分开始到胚轴延伸结束,在此过程中,种子的胚细胞会经历从静息代谢到活跃代谢状态的程序性转变。水稻(Oryza sativa)是植物研究中的经典模式生物,针对水稻种子萌芽已经在转录组,代谢组和蛋白组水平上进行了深入研究,但是该过程中的翻译后修饰研究目前还不是很多。泛素化是一种普遍存在的翻译后修饰(PTM),它指的是由泛素激活酶(E1),泛素结合酶(E2)和泛素连接酶(E3)依次催化并最终将泛素(Ub)结合到其底物上来发挥功能。泛素化修饰可以通过调节蛋白的转运、活性和降解等功能来协调植物几乎所有的生长和发育过程。2019年11月2日,湖北大学生命科学学院生物催化与酶工程重点实验室杨平仿教授在Plant Journal上发表题为Quantitative Ubiquitylomics Approach for Characterizing the Dynamic Change and Extensive Modulation of Ubiquitylation in Rice Seed Germination的论文,研究者对水稻种子萌芽过程中的泛素化修饰组以及蛋白组进行研究,找到关键调控通路并进行验证。本篇研究不仅揭示了水稻种子萌芽过程中泛素化以及蛋白组的调控,更扩展了我们对种子萌发过程中这一关键翻译后修饰的理解。景杰生物作为共同署名单位之一,参与了其中...
发布时间: 2019 - 11 - 13
弓形虫(Toxoplasma gondii)是一种能够感染所有温血动物的细胞内寄生虫,它所引起弓形虫病是世界上最普遍的人畜共患病之一。弓形虫主要侵入有核细胞,直接造成大量细胞溶解和组织功能障碍,因此给免疫系统受损的病人和接受免疫抑制治疗的病人带来巨大威胁。此外,弓形虫还能穿过胎盘屏障,严重威胁孕妇和新生儿健康。早期研究发现,蛋白质翻译后修饰(PTM)广泛存在于弓形虫体内,通过调控蛋白质的结构和功能影响弓形虫的增殖,运动和致病力。2019年11月,沈阳农业大学陈启军教授课题组在蛋白质组学Top期刊Molecular & Cellular Proteomics上以封面文章的形式在线发表了题为Global lysine crotonylation and 2-hydroxyisobutyrylation in phenotypically different Toxoplasma gondii parasites的论文。作者利用两种具有不同增殖模式和致病性的弓形虫虫株(RH和ME49),绘制出迄今为止最全面的弓形虫赖氨酸巴豆酰化和2-羟基异丁酰化修饰图谱。研究者发现致病力强、繁殖快的弓形虫虫株(RH)发生修饰的水平明显高于致病力弱、繁殖慢的弓形虫虫株(ME49),提示蛋白质翻译后修饰在虫株致病力调控中发挥着重要作用。该研究不仅加深了研究者对人畜共患弓形虫病分子调控机制的理解,并且...
发布时间: 2019 - 11 - 01
阿尔茨海默症(AD)是一种起病隐匿的进行性发展的神经系统退行性疾病,没有治愈的方法,也没有预防或逆转其症状的药物,因此揭示疾病早期的生理分子变化,对阿尔茨海默症的预防与认知尤其重要。星形胶质细胞,在神经元之间清除β淀粉样蛋白(Aβ),但如果清除过程出错,淀粉样蛋白堆积在神经元周围,导致形成典型的淀粉样蛋白斑块和神经细胞退化,这是阿尔茨海默症的重要病理特征。然而,其确切的潜在分子机制仍有待阐明。近日,清华大学深研院张雅鸥教授团队于国际专业学术期刊Cellular and Molecular Life Sciences(IF=7.014)发表最新成果,研究揭示了乙酰化和巴豆酰化在NEAT1介导的基因表达调控中的不同作用,为NEAT1在基因表达和AD病理学中的表观遗传调控机制提供了依据。该研究中的乙酰化与巴豆酰化修饰检测定量由景杰生物提供了技术支持。NEAT1( Nuclear Paraspeckle Assembly Transcript 1 ) 是一种长约3.2kb的长链非编码RNA(lncRNA),它主要富集于细胞核中,是形成与维持细胞核亚结构paraspeckle的关键非编码RNA。目前,NEAT1已被证明参与了许多疾病的发展过程,如黄体形成、乳腺发育、癌症、病毒感染和自身免疫性疾病。此外,神经退行性疾病(如亨廷顿氏病和多发性硬化症)也存在NEAT1失调。但是,NEAT...
发布时间: 2019 - 08 - 30
S-亚硝基化(S-nitrosylation)是一种基于氧化还原的蛋白质翻译后修饰,可调节多种生理和病理过程。类似于其他翻译后修饰,S-亚硝基化可通过改变蛋白构象,稳定性,亚细胞定位,生物化学活性和蛋白质-蛋白质相互作用的来调节蛋白的功能。一氧化氮(NO)是涉及动植物的各种发育过程和应激反应的关键信号分子,NO的主要生物活性通过S-亚硝基化反应将NO基团共价加到蛋白质的活性半胱氨酸巯基上形成S-亚硝基硫醇来实现。在高等植物对生物胁迫和非生物胁迫响应中,活性氧(ROS)和NO的爆发及其相互调节对于早期信号传导至关重要,其中S-亚硝基化已经显示出调节参与ROS稳态的关键酶的活性。S-亚硝基化和脱亚基化的动态过程主要由细胞内S-亚硝基谷胱甘肽(GSNO)的水平调节,GSNO可以被高度保守的GSNO还原酶(GSNOR)不可逆转地降解。2019年7月,山东农业大学史庆华教授课题组在国际权威期刊Plant and Cell Physiology发表了题为:Unravelling GSNOR-mediated S-nitrosylation and multiple developmental programmes in tomato plants的最新研究成果。图1. GRNOR介导的番茄植株发育作者运用蛋白质组学、S-亚硝基化修饰组学技术结合相应的生理生化实验方法,获得GSNOR介导的表型和...
发布时间: 2019 - 08 - 05
2019年7月23日,蛋白质组学top期刊Mol Cell Proteomics发表了中国科学院上海生物科学研究所植物生理与生态研究所赵国屏院士、赵维研究团队琥珀酰化修饰组学的文章,研究揭示了ScCobB2介导的链霉菌蛋白质合成和碳代谢调控机制。在本文的土壤链霉菌模型中,研究人员用生物化学方法将sirtuin样蛋白ScCobB2定义为去琥珀酰化酶。将∆ScCobB2与野生型菌体通过LC-MS/MS分析,结果表明在∆ScCobB2细胞中至少有114个蛋白存在明显的高琥珀酰化修饰调控,涵盖蛋白生物合成和碳代谢两种主要途径。此研究首次在细菌中发现了一种特异性的去琥珀酰化酶,并证明其在S. coelicor的多个生物学过程中具有关键的调控作用,为后续在其他微生物中琥珀酰化调控的研究奠定了基础。景杰生物为该文章的合作单位。蛋白质翻译后修饰(PTM)在细胞进程调控中扮演至关重要的角色,通过改变蛋白质的性质,如结构、稳定性、复杂的形成或酶活性而发挥作用。蛋白质中的20种氨基酸,赖氨酸是最常见的共价修饰的目标之一,可发生诸如泛素化,乙酰化,丙酰化, 丙二酰化, 巴豆酰化等修饰。通过这些修饰,含有赖氨酸的蛋白调控作用被大大拓宽。作为一个在真核生物中最近发现的蛋白质翻译后修饰,赖氨酸琥珀酰化修饰吸引了越来越多的关注,其功能涉及一些重要的细胞进程包括分解代谢,β-氧化和生酮作用。然而,由于在微...
发布时间: 2019 - 08 - 05
39页次1/4首页1234尾页
新闻推荐 NEWS
Copyright ©2018-2020 杭州景杰生物科技有限公司
犀牛云提供云计算服务
X
合作
交流
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 400-100-1145
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开
合作交流
填写信息,我们的专属学术顾问将为您解答疑问!